Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wei-Wei Liu, ${ }^{\text {a,b }}$ Yi-Zhi Li, ${ }^{\text {c }}$ Run-Kun Sun, ${ }^{\text {b }}$ Hong-Wen $H u,{ }^{b, c} *$ Qiang-Jin $W u^{d}$ and Zi-Xiang Huang ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\mathrm{d}}$ Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.065$
$w R$ factor $=0.137$
Data-to-parameter ratio $=11.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

(Z)-2,3-Bis(2-phenylindolizin-3-yl)-2-butenedinitrile

The title compound, $\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~N}_{4}$, shows a Z configuration for the two 2-phenylindolizin-3-yl substituents. There are two intramolecular $\pi-\pi$ interactions. The molecule self-assembles into a three-dimensional framework structure through one intermolecular $\pi-\pi$ interaction and two weak intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ interactions.

Comment

Organic electroluminescent devices are of both academic and industrial interest due to their potential applications in display technology (Ziemelis, 1999). The advantages of these organic materials over inorganic materials are high fluorescent efficiencies, wide ranges of emission wavelengths and the fact that they can be easily fabricated into large films (Kido, 1999). Recently, research on these compounds has focused on their fluorescent efficiency and solubility with different donoracceptor substituents (Park et al., 2000; Brabec et al., 2001). We report here the X-ray crystal structure of (Z)-2,3-bis(2-phenylindolizin-3-yl)-2-butenedinitrile, (I), in which the donor-acceptor substituent is 2-phenyl-3-indolizinylcyano.

(I)

The title compound shows a Z configuration for the two 2-phenyl-3-indolizinyl substituents (Fig. 1 and Table 1). The eight atoms ($\mathrm{N} 3 / \mathrm{C} 10-\mathrm{C} 8 / \mathrm{N} 4 / \mathrm{C} 26-\mathrm{C} 24$) around the $\mathrm{C} 9=\mathrm{C} 25$ double bond are nearly coplanar, with a maximum deviation of 0.022 (2) \AA for atom N2.

There are two intramolecular $\pi-\pi$ interactions between benzene rings and neighboring indolizinyl rings [Cg1 $\cdots C g 2=$ 3.490 (2) \AA and $C g 3 \cdots C g 4=3.496$ (2) \AA] (Cg2 and $C g 3$ are the mid-points of the $\mathrm{C} 21-\mathrm{N} 2$ and $\mathrm{C} 5-\mathrm{N} 1$ bonds, respectively, and $C g 1$ and $C g 4$ are the centroids of the benzene rings C11-C16 and C27-C32, respectively).

The crystal structure of (I) exhibits an intermolecular $\pi-\pi$ interaction and two weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions, as shown in Fig. 2 and Table 2. Zigzag chains of molecules are formed along the a axis through one weak

Received 4 January 2005 Accepted 18 January 2005 Online 29 January 2005

Figure 1
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate $\pi-\pi$ interactions.

Figure 2

The intermolecular $\pi-\pi$ interactions and weak intermolecular interactions (dashed lines) in the structure of the title compound [symmetry codes: (i) $1-x, 1-y, 2-z$; (ii) $-x, 1-y, 2-z$; (iii) $\left.-x,-\frac{1}{2}+y, \frac{3}{2}-z\right]$.
intermolecular interactions ($\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{~N} 3^{\mathrm{i}}$) and one intermolecular $\pi-\pi$ interaction $\left[C g 5 \cdots C g 5^{\text {ii }}=3.627\right.$ (2) \AA] [$C g 5$ is the mid-point of the $\mathrm{C} 5-\mathrm{N} 1$ bond; symmetry codes: (i) $1-x, 1-y, 2-z$; (ii) $-x, 1-y, 2-z]$. Neighboring chains of molecules are connected through an additional weak intermolecular interaction [C30-H30AN $3^{\text {iii; }}$; symmetry code: (iii) $-x,-\frac{1}{2}+y, \frac{3}{2}-z$], resulting in a three-dimensional framework structure (Fig. 3).

Experimental

A solution of 2-phenylindolizine-3-acetonitrile ($0.12 \mathrm{~g}, 0.5 \mathrm{mmol}$) and sodium hydroxide ($0.02 \mathrm{~g}, 0.5 \mathrm{mmol}$) in dimethylformamide (5 ml) was treated with oxygen at room temperature for 24 h . The resulting mixture was chromatographed on a column of alumina with petroleum ether/ethyl acetate as eluants. Evaporation of the eluants gave the title compound as a dark purple solid. Single crystals suitable for X-ray crystallographic analysis were obtained by recrystallization from acetone.

Figure 3
The three-dimensional framework of the title compound. Dashed lines indicate $\pi-\pi$ interactions and weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions.

Crystal data
$\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~N}_{4}$
$M_{r}=460.52$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=11.663$ (2) A
$b=11.695$ (2) \AA
$c=18.348$ (4) A
$\beta=105.38(3)^{\circ}$
$V=2413.0(9) \AA^{3}$
$Z=4$

$$
D_{x}=1.268 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3716
reflections
$\theta=2.3-22.6^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, purple

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.97, T_{\text {max }}=0.98$
$0.32 \times 0.26 \times 0.24 \mathrm{~mm}$

15789 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.137$
$S=1.02$
4719 reflections
405 parameters
All H -atom parameters refined

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

C8-C9	$1.449(3)$	C24-C25	$1.447(3)$
C9-C25	$1.375(3)$	C25-C26	$1.441(3)$
C9-C10	$1.440(3)$		
C25-C9-C10	$117.6(2)$	C9-C25-C26	$117.5(2)$
C25-C9-C8	$124.6(2)$	C9-C25-C24	$124.3(2)$
C10-C9-C8	$117.7(2)$	C26-C25-C24	$118.2(2)$
C10-C9-C25-C26	$6.5(3)$	C10-C9-C25-C24	$-170.5(2)$
C8-C9-C25-C26	$-170.8(2)$	C8-C9-C25-C24	$12.1(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{~N} 3^{\mathrm{i}}$	$0.92(3)$	$2.62(3)$	$3.386(4)$	$140(2)$
$\mathrm{C} 30-\mathrm{H} 30 A \cdots \mathrm{~N}^{\mathrm{ii}}$	$0.90(4)$	$2.73(4)$	$3.498(4)$	$144(3)$

Symmetry codes: (i) $1-x, 1-y, 2-z$; (ii) $-x, y-\frac{1}{2}, \frac{3}{2}-z$.

All H atoms were located in difference Fourier maps and refined isotropically, the $\mathrm{C}-\mathrm{H}$ distances being in the range 0.86 (3)1.03 (4) Å.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine
structure: $\operatorname{SHELXTL}$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

This work was supported by the Education Department, Natural Science Foundation of Jiangsu Province of the People's Republic of China (grant No. 03KJB150009).

References

Brabec, C. J., Sariciftci, N. S. \& Hummelen, J. C. (2001). Adv. Funct. Mater. 11, 15-26.
Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Kido, J. (1999). Phys. World, pp. 27-30.
Park, J. W., Lee, J. H., Lee, H. S., Kang, D. Y. \& Kim, T. W. (2000). Thin Solid Films, 363, 90-93.
Ziemelis, K. (1999). Nature (London), 399, 408-409.

[^0]: (C) 2005 International Union of Crystallography

